

03 30 00	Cast in Place Concrete
03 40 00	Precast Concrete
03 70 00	Mass Concrete

MCI[®]-2005 Patented

DESCRIPTION

MCI[®]-2005 is a water-based, organic, corrosion inhibiting admixture for protection of metallic reinforcement in concrete structures.

When incorporated into concrete, MCI-2005® forms a protective, monomolecular layer on embedded metals that inhibits corrosion. In new construction, this is quantified by an increase in critical chloride threshold and subsequent reduction in corrosion rates when corrosion does initiate. When used with repair mortars and grouts, MCI®-2005 not only protects rebar within the patch, it is able to migrate into undisturbed concrete adjacent to the repair, to protect reinforcement already in place.

MCI[®]-2005 has been awarded the USA BioPreferred[™] designation (www.biopreferred. gov).

PACKAGING & STORAGE

Available in 5 gallon (19 Liter) pails, 55 gallon (208 Liter) drums, and 275 gallon (1040 Liter) totes.

Store away from direct sunlight and at ambient temperatures – above 32°F (0°C) and up to 131°F (55°C). When properly stored, MCI®-2005 has a shelf life of 24 months.

HOW IT WORKS

MCI®-2005 is an organic corrosion inhibitor. It is considered ambiodic (mixed), meaning it protects both anodic and cathodic areas within a corrosion cell. MCI®-2005 contains a blend of amine salts of carboxylic acids which form a protective layer on embedded reinforcement delaying the onset of corrosion as well as reducing existing corrosion rates.

MCI®-2005 is effective at enhancing the durability and extending the service life of concrete structures exposed to corrosive environments (carbonation, chlorides, and atmospheric attack).

WHERE TO USE

- Reinforced concrete including precast, pre-stressed, and post-tensioned structures
- Corrosive environments including exposure to deicing salts, saline groundwater, airborne chlorides, and carbonation
- Marine and coastal structures, highways and bridges, parking decks, balconies, pools, concrete tanks, pilings, substructures, piers, pillars, pipes, and utility poles

ADVANTAGES

- Biobased (67%), awarded USA BioPreferred[™] designation (www.biopreferred.gov)
- Earns credit towards LEED certification
- Lower toxicity and environmental impact than traditional corrosion inhibiting admixtures such as calcium nitrite
- Low dosage rate with minimal effect on concrete properties (i.e. workability, strength development, air entrainment, etc.)
- Single dosage rate which is independent of expected exposure to chlorides
- Ability to migrate through porous substrates (concrete, masonry, limestone, etc.) by capillary action, vapor diffusion and ionic attraction
- Meets all requirements of ASTM C1582
- Certified to meet ANSI/NSF Standard 61 for use on structures holding potable water
- Field and lab tested worldwide
- Complies with CSA S413, Section C1.2, for corrosion inhibiting

PHYSICAL PROPERTIES

Appearance	Clear dark brown liquid
рН	9.5-11.5 (neat)
Non-volatile Content	44-55%
Density	9.5-10.3 lb/gal (1.14-1.23 Kg/L)
Shelf Life	24 months

DOSAGE

Add MCI[®]-2005 to concrete mix or repair mortars at 1 pt/yd³ (0.6 L/m³). Dosage is fixed and independent of chloride levels.

APPLICATION

MCI[®]-2005 is best added with the mix water into ready mix concrete at the plant. Alternatively, it can be dosed into the ready mix truck using portable dosing equipment. Concrete should be mixed thoroughly before placement.

STANDARD TEST RESULTS

Slump	ASTM C143	Neutral			
Air Content	ASTM C231	Neutral			
Density	ASTM C138	Neutral			
Set Time	ASTM C403	Delayed			
Flexural Strength	ASTM C78	Improved			
Compressive Strength	ASTM C192	Improved			
Corrosion Properties	ASTM C1582 ASTM G180	Meets Requirements			
Biobased Content ASTM D6866		67%			
Workability	N/A	No adverse effects when used with pozzolans or other high performance concrete admixtures			

ASTM C1582 PHYSICAL PROPERTY RESULTS								
Setting Time								
	Control	MCI 2005	Relative to Control	Relative to Control ASTM C1582 Requirement				
Initial Set (Minutes)	312	431	+119	+/- 210 Min of Control	Meets Requirement			
Final Set (Minutes)	404	524	+120	+/- 210 Min of Control	Meets Requirement			
Compressive Strength								
3 Day (psi)	3290	3647	111%	Min 80% of Control	Meets Requirement			
7 Day (psi)	4070	4377	108%	Min 80% of Control	Meets Requirement			
28 Day (psi)	5143	5330	104%	Min 80% of Control	Meets Requirement			
6 Month (psi)	6077	6650	109%	Min 80% of Control	Meets Requirement			
1 Year (psi)	6463	6877	106%	Min 80% of Control	Meets Requirement			
		Flexural	Strength					
3 Day (psi)	585	591	101%	Min 80% of Control	Meets Requirement			
7 Day (psi)	661	691	104%	Min 80% of Control	Meets Requirement			
28 Day (psi)	757	797	105%	Min 80% of Control	Meets Requirement			
Shrinkage								
Length Change (%)	-0.025	-0.021	0.004	Max 0.010 Over Control	Meets Requirement			
Durability								
Freeze/Thaw Durability	99.1	98.8	99.8	RDF 80%	Meets Requirement			

	ASTM C1582 CORROSION PROPERTIES - ASTM G180 RESULTS									
Camala	Potential	Rp	1/Rp	Log (1/Rp)	$\log (1/\text{D}n)$ $(ron (rm2))$	Dosage	Mean 1/Rp	SD 1/Rp	Log (1/Rp)	Log SD
Sample	mV (SSC)	(Ohms)	(µS/cm²)		Area (cm ²)	(L/m³)	(µS/cm²)	(µS/cm²)		
Cortec [®] -1	-509	8192	23.85	1.38	5.12	0.60	38.91	21.29	1.33	0.29
Cortec [®] -2	-530.6	3626	53.96	1.73	5.11					
Cortec®-3	-500.2	9373	20.85	1.32	5.12					
Cortec [®] -4	-457.9	24360	8.10	0.91	5.07					
Controls (13) Average of Results	Average of -522.9 Average				0	394.71	214.21	2.49	0.35	

The results from the inhibitor tests were compared to 13 control runs on the same steel heat, and using the same cement in lab database. The comparsison shows that MCI®-2005 reduces the corrosion current (1/Rp) by a factor of ten so it meets the ASTM C1582 requirement of being 1/8 the value (49.3µS/cm²) of the control specimens without inhibitor.

ASTM G109 RESULTS

ASTM G109 - Standard Test Method for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments

MCI[®]-2005 doubles the time to the onset of corrosion and reduces corrosion currents by 80% compared to untreated samples.

CONSIDERATIONS

The use of MCI[®]-2005 can cause a delay of initial setting time. The extent of this delay is dependent on the mix design, temperature and humidity. The combination of MCI®-2005 with certain superplasticizers can also increase the set delay experienced. Concrete properties are always best determined in a trial using the actual mix components. Cortec recommends a trial batch anytime you are using MCI®-2005 with new mix components.

Consult with Cortec's Technical Support Department for further guidance if necessary.

replacement product under this warranty, the customer must notify Cortec* Corporation of the claimed defect within six months after shipment of product to customer. All freight charges for replacement products shall be paid by customer Cortec® Corporation shall have no liability for any injury. Joss or damage arising out of the use of or the inability to use the products

BEFORE USING, USER SHALL DETERMINE THE SUITABILITY OF THE PRODUCT FOR ITS INTENDED USE, AND USER ASSUMES ALL RISK AND LIABILITY WHATSOEVER IN CONNECTION THEREWITH. No representation or recommendation not contained herein shall have any force or effect unless in a written document signed by an officer of Cortec® Corporation.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIFLIDE ALL OTHER WARRANTIES EXPRESS IMPLIED OR STATUTORY INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE. IN NO CASE SHALL CORTEC® CORPORATION BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

Revised: 03/15/18. Supersedes: 08/15/17. ©Cortec Corporation 2002-2018 of Cortec® Corporation. All Rights Reserved. Copying of these materials in any form without the written authorization of Cortec® Corporation is strictly prohibited. 2018, ©Cortec® Corp. ISO accreditation applies to Cortec's processes only.